,其容积又减少。(见第二章中的查理定律)。 二、容积效率 比值: 三、热效率及总效率 除了上述损失外,热量的影响也使压缩空气的效率降低.这些损失使总效率进一步减少,减少的程度取决于压缩比和负荷。满量工作的压缩机积聚了大量的热量从而降低了效率。在两级压缩机中,压缩比逐渐减小,部分在第一级中被压缩的空气在第二级气缸被压至最终压力前,经过中间冷却器冷却。 例如,如果第一级气缸吸入的大气被压缩到它体积得1/3,那末,在输出处它的绝对压力将达3bar(ABS),相对来说,由于压缩比小而产生的热量相对较低,压缩空气通过中间冷却器后输入第二级气缸,然后又被压缩到它的体积的1/3,于是空压机的最终输出压力为9bar(ABS)。 在一级压缩机中直接把大气压缩到9bar(ABS),其产生的热量要比二级压缩机要多得多,总效率也将大大下降。从图3.6中可知,最终压力为9bar(ABS)时,单级空压机的总效率为65%,而双级空压机的总效率为80%。 单级压缩机的最终压力较低,其纯容积效率较高。然而,随着最终压力的逐渐增加,热量损失变得愈来愈重要,具有较高热效率的二级压缩机的优越性就体现出来了。 “单位能量消耗”是衡量总效率的指针,并且能用于估计制造压缩空气所需的费用。平均估算:1kw电能产生120—150l/min(=0.12—0.15 四、压缩机的入口过滤器及精度 典型的城市空气含有4000万单位/m3的固体颗粒,即灰尘、油泥、花粉等。如果这种空气被压缩到7巴,那么浓度将达到3.2亿单位/m3。压缩机工作可靠的一个重要条件是必须提供合适且有效的过滤器,以免气缸和活塞环过量损耗,这种损耗主要是由于这些不纯物质的摩擦而引起的。压缩机的进气过滤器不需太细密,因为压缩机的效率随空气阻力的增加而减少。因此,细小的颗粒(2~5μ)不能滤掉。空压机的吸气口应设置得尽可能远,干净的干燥空气向上流动,进气管的直径应足够大,以避免遇大的压力降。当应用消声器时,过滤器应放在它的上端以尽可能减小空气流的脉动。 经压缩机压缩产生的压缩空气,除含有水份外,还含有油份和粉尘。它们在压缩空气中的形态如图3.7所示。在一个大气压下,单位体积的空气里所含的粉尘,经压缩后,含尘量并不改变。其结果是压缩空气中单位体积里所含有的粉尘的密度增高。这种含有固体颗粒、粉尘的压缩空气进入气动回路的各元件中,将会破坏元件的运动表面,堵塞一些窄小的阻尼小孔和喷咀,影响压缩空气的正常流动,导致元件的误动作,使系统难于正常工作。 3.3 空气的品质及处理过程 一、压缩空气的品质分级与应用场合 压缩空气根据其过滤程度不同可分为八个等级。各等级的压缩空气可应用于不同的场合,具体情况如表3-1所示。 二、后冷却器 压缩后空气将很热,当冷却时,将不可避免地在空气管道上产生大量的凝结水,除去们的最有效方法是在压缩后立即将空气送人后冷却器。后冷却器是一种热交换器,既可用空气冷却又可用水冷却。 空气冷却式后冷却器原理入图3.9 所示, 压缩空气通过一束束管道,由风扇产生的冷空气,强迫吹向管道,被冷却的压缩空气输出口温度大约比室温高15℃。空气冷却式后冷却器: (一)应安装在容易维修和保养的位置。 (二)保持良好通风效果,冷却器与墙壁最少保持20公分距离。 (三)保持散热片清洁。 (四)确保凝聚的水份能适当排掉。 水冷却式后冷却器原理入图3.10 所示。在钢壳式管左侧为水进出端,上部为压缩空气进出端,它们以相反的方向通过冷却器。水冷却的后冷却器必须保证输出空气的温度比冷却水的温度高大约10℃左右。通常在冷却器的底部有一个自动排水器和后冷却器连接或做成一体以除去水分等凝结物。 水泠却式后冷却器在安装时应注意: (一)应装上安全阀,压力表,并建议装入水和空气的温度计。 (二)应安装在容易维修和保养的位置。 (三)避免污染物降低冷却效能,在入口前应加装10μm的过滤器。 (四)采用洁净冷却水避免冶却管道被腐蚀。 (五)警告开关显示水源供应问题。 (六)经常检测出水温度并保持管度洁净畅通。 (七)安装自动排水器并确保凝聚的水份能被适当排掉。 表3-1 空气的品质定义和应用
三、储气罐及选择计算 储气罐是由钢板焊接制成的压力容器,水平或垂直地直接安装在后冷却器后面来储存压 缩空气。因此,可以减少空气流的脉动。它的重要功能是贮备足够的空气来满足超出压缩机容量的要求,尽可能减少压缩机经常发生的“满载”与“空载”现象,同时它可进一步冷却压缩空气,凝结从后冷却器中出来的油和水份,对压缩空气作初步净化处理。因此,最好将储气罐放在阴凉处。 在储气罐上装有安全阀、压力表、排水阀以及便于检查和清洁其内部的入孔盖。 储气罐尺寸大小的选择计算是根据压缩机的输出量,系统的尺寸大小以及需求量是否恒定来确定的。 通常将若干个压缩机组成一个供气网络,以保证在最小用气量与最大用气量之间进行切换。压缩机的压力通常通过“自动控制”,在最小压力和最大压力之间切换。这就需要一个“最小储气罐容积”以避免这种频繁的切换。 由内燃机驱动的流动压缩机将空气压到最大压力后也不停止,但吸气阀上升以便空气自由地进入气缸而不被压缩,压缩和空载运动之间压力差很小,这时仅需较小储气罐。 对工厂来说,计算储气罐尺寸的原则是: 储气罐容量≈压缩机每分钟压缩空气的输出量(不是FREE AIR DELIVER) 例如,压缩机输出 四、主路过滤器 在储气罐后应装一个大容量的主管道过滤器,除去从压缩机中带来的油雾和空气中的水份等杂质。过滤器必须保证最小的压降,并能除去压缩机中带来的油雾,以避免冷凝物在管道中的乳化作用。它没有那种标准空气过滤器中的导流板。而装在内部的自动排水器或接上外部的自动排水器能确保排出聚积的水。 这种过滤器的滤芯一般是快速更换筒型滤芯。过滤精度一般由3μm至5μm,滤芯由合成纤维制造,由于纤维以矩阵形式排列,气体需径过迂回途径才能离开滤芯,因而亦发挥过滤效能。 主路过滤器在安装中应注意: 1.主路过滤器应安装在阴凉地方。 2.安装自动排水器并确保凝聚的水份能自动排掉。 3.滤芯的压力降可利用装在过滤器入口和出口的压力表来检测。压力降会由于滤芯堵塞而上升,若压力差超过(1 BAR)便需更换滤芯。 4.滤芯为弃置形式,不能清洁,需更换新滤芯。 五、空气干燥器 后冷却器将空气冷却到比冷却媒介高10—15℃。气动系统控制和操作组件的温度通常为室温(大约20℃)。这意味着没有凝结物的进一步积聚,同时剩下的湿气通过输出同排气一起排入大气。但是,离开后冷却器的空气温度比管道输送的环境温度高,例如在晚间,这将进一步冷却压缩空气,将更多的水蒸汽凝结成水。 用于干燥空气的方法是降低露点,这个温度,空气完全使湿气达到饱和(即100%相对湿度)。露点越低,留在压缩空气中的水份就越少。 有三种主要型式的空气干燥器:冷冻式、吸收式和吸附式。 (一)冷冻式空气干燥器 冷冻式空气干燥器是一个机械装置,它包含了一个冷冻回路和两个热交换器。潮湿高温空气通过第一级热交换器1将部分热量传递给冷却干燥后的输出空气,它就被预冷却。热交换器2中有一个制冷回路,在这个回路中蒸发氟里昂致冷剂需吸收热量,所以使空气进一步得到了冷却。此时水份和油雾凝结并自动排除。干燥冷空气再通过热交换器1,又从进入热交换器1的潮湿高温空气处得到热量,这就避免在输出口结露并增加了制效果冷。 尽管在一般应用中压缩空气的温度达到5℃就足够了,然而用现代方法使输出温度达到2℃是可能的。输入温度可高达60℃,但进行预冷以得到较低输入温度比较合乎经济。一般来说,用这种方法干燥空气的费用为压缩空气费用的10~20%。 (二)吸收式(潮解式)干燥器 吸收式干燥器工作原理如图3.14说所示。压缩空气被强迫通过如干燥白垩、固态氯化镁、氯化锂或氯化钙等干燥剂时,湿气与这些物质产生化学反应,形成的乳化液从底部排除,穿过干燥剂的压缩空气从上部输出。 干燥剂必须在一定的时间内进行补充,因为随着这类“盐”的消耗,露点会提高。但是7巴压力下露点为5℃是可能的。 这种方法的主要优点是它的基本建设和操作费用都较低。但是进口温度不得超过30℃,其中的化学物质是强烈腐蚀性的.必须仔细检查滤清,防止腐蚀性的雾气进入气动系统中。 (三)吸附式(干燥剂)干燥器 图3.15是无热吸附式干燥器的原理图在2个直立的容器内的粒状硅胶或活性铝,可物理性吸收穿过它们的压缩空气中的水份。当干燥剂饱和后,可通过部分早先干燥的空气流过,使其再生。湿的压缩空气通过方向控制阀进入干燥筒1。干燥空气从输出口流出。10~20%的干燥空气通过节流孔02进入干燥筒2,相反吸收干燥剂中的水份而使它再生,这些再生空气然后被排入大气。 由一个定时器周期性地切换方向控制阀,让输入空气交替地进入一个干燥筒和另一个再生筒。从而不断地输出干燥空气。 在干燥箱内安装有一个颜色指示器,可监视饱和程度,在输出口必须装一个微过滤器防止夹带吸附剂的微粒雾气.采用这种干燥方式的初期投入和操作费用相对来说较高,但维护费用较低。当要求露点特别低的压缩空气时,如-40℃,可用此方法干燥。 这三种压缩空气的干燥方式并非需要同时应用。一般气源系统都加有冷冻干燥机,在露点温度要求特低时(如-40℃),可采用吸附式干燥器。而吸收式干燥器使用相对较少。 六、压缩空气的输送管道 空气主管道是一个固定安装的用于把空气输送到各处的耗气系统。必须安装断路阀,它能在维修和保养期间把空气主管道分离成几部分。主管道一般有两种主要的配置:终端管道和环状管道。 2/5 首页上一页12345下一页尾页 |