10大方法教你如何排除过程仪表及调节阀故障

时间:2016-01-23 来源:网络 作者:佚名 收藏到我的收藏夹
简介:所谓仪表故障,大致可分为两类,一类是仪表自身故障,另一类是系统故障,是生产过程中仪表检测与控制系统出现的故障。仪表自身故障第一类故障,由于故障比较明确,处理方法相对比较简单,对于这

工艺过程 裂解炉出口温度指示调节TIC-202 用热电偶作为测量元件,以改变燃料量来控制出口温度。

故障现象 TIC-202温度指示偏低,当改变调节阀开度增加燃料油流量时,温度指示变化滞缓。

分析与判断 温度调节系统出现这样的故障现象比较难以判断。调节系统调节不灵敏有许多因素,诸如调节器P、I、D参数不合适,比例P和微分I作用不够,调节阀的调节裕量不够等,工艺提量了,而阀门尺寸没有变,使得调节阀显得小了,调节阀有卡堵现象,以及测温元件滞后造成调节系统不灵敏等。经过检查,发现热电偶芯长度不够,没有插到保护套管。

这样造成热电偶热端和套管顶部之间有一段空隙。由于空气热阻大,传热性能差,造成很大的测量滞后。纯滞后大的测量系统一般PID调节器是很难改善调节的,所以出现温度变化迟缓等现象。另外测温点位置也有变化。如果设备内温度分布不很均匀,那么A点和B点的温度就会有差异。再者,套管端点温度通过空气层传递到热电偶热端时,有热量损失,热电偶热端温度t1要低于保护套管顶部温度t0,所以温度指示偏低。

大批温度调节器指示偏低

工艺过程 某化工企业装置内有大批温度调节系统,用热电偶作为测温元件,经过温度变送器将信号传送至单回路调节器。

故障现象 大修后仪表开车,发现大批温度调节器指示偏低。

分析与判断 仪表在大修时都校正过,但是出现大批量指示偏低现象,就需要重新检查了。

采用热电偶作为测温元件,存在一个冷端补偿问题和补偿导线问题。大批量仪表指示偏低,冷端补偿处理不好的可能性极大。温度变送器输入信号V0等于热电偶侧得相应温度的热电势E1减去冷端温度(环境温度)所产生的热电势E2(也称室温电势),即:V0=E1-E2。冷端温度(或称室温)不同地点有不同温度。正确的环境温度是室温补偿电阻所在的环境温度。对于温度变送器而言,环境温度是温度变送器接线端子板小盒中的温度,它产生的室温电势记为E21。若考虑冷端补偿时采用E21的值,由上式可得:V01=E1-E21,而仪表正常运行时,试问电势应为E20,即:V00=E1-E20,因为E21<E20,所以V01>V00。仪表工发现温度变送器输出偏高,将温度变送器零位调下来,待实际投用时,则温度指示偏低了。

处理方法 可用实际测得温度变送器室温补偿电阻出的温度。具体办法是把温度计深入到端子接线板小盒内,并用绝热材料包好,避免冷风吹。测得环境温度,用测得的环境温度相应的热电势带入V0=E1-E2进行校正,这样校正仪表比较精确。

合成塔开车升温过程中温度指示异常

工艺过程 某氨厂合成塔,从上至下装有一支10 m左右长的热电偶套管,内插多点热电偶。

故障现象 开车升温过程中发现有温度指示异常,初期各测温点温度指示相应上升,一段时间后,下部各测温点温度仍继续上升,均在200℃左右,唯最上部测温点的温度指示在100℃左右停滞。据分析,该点实际温度肯定在130℃以上。

分析与判断 最上部测温点温度指示在100℃左右停滞,说明该处有水汽积聚,其水分受热后向上蒸发,在上部遇冷凝结成小水珠,该水珠又在套管内落下,如此反复,致使上部测温点的指示停滞在水沸点(100℃)左右。产生此故障的原因是保护导管安装前未经处理或处理不符合要求以及套管内气体温度仍较高。

处理方法 将该多点热电偶往上提,使上部测温点高于套管顶部一定距离,其内部的水汽被夹带出套管后在外部蒸发。如此反复多次,如水汽不多,一般可恢复正常,否则,需把热电偶全部取出,用一支细尼龙管插入导管底部,将干燥的氮气充入管内,使水汽逐渐地被置换出来。

烯烃厂裂解装置DCS温度指示偏高

故障现象 乙烯装置45万吨改造完以后,开车前检查校验温度变送器时发现有近300个温度点, DCS显示均比实际标准温度高出2~3℃,而这些温度点大部分是分离冷区冷箱及几个重要的塔上的温度指示,如果测量不准,将无法进行温度控制,直接影响乙烯产品的质量。

分析与判断 45万吨乙烯DCS改造,从端子排到温度变送器的补偿导线均由日方提供,在校验温度变送器时,从输入端子加信号DCS指示比标准值要高出2~3℃。而用同样长度的另一根补偿导线检验时DCS指示于标准值几乎没有误差,因此断定是补偿导线出了问题。对所有的温度点进行了检查,发现有日方提供的所有的K型、T型补偿导线的极性均接反,且输入端子柜与温度变送器柜之间存在1~2℃温差,从而导致了测量误差。

处理方法 换补偿导线的极性,指示正常。

流量检测故障判断分析与处理流量检测比较复杂,有气体、蒸汽和液体不同的工艺介质,又有质量流量和体积流量之分。体积流量受到温度和压力影响,在测量时要注意温压补偿。流量测量方法很多,诸如容积法、节流法、速度法、电磁法等。测量的仪表种类亦很多。不同的测量方法,不同的仪器仪表,其出现的故障各不相同。作为流量检测系统,其故障现象最终都表现为流量指示不正常,只是偏高或偏低,或者没有指示等现象,所以流量检测故障判断的思路大致相差不多。
流量测量故障处理举例乙烯出料流量指示偶发性偏低

工艺过程 某石化企业乙烯装置乙烯出料流量记录调节系统FRC-02由孔板及差压变送器、单元组合调节器、指示记录仪、调节阀等组成。塔顶回流流量记录调节系统FRC-01由孔板差压变送器、开方器、单元组合调节器、指示记录仪、调节阀等组成。FRC-01和FRC-02通过减法器相关联。

故障现象 工艺人员反映乙烯出料量FRC-02指示值经常出现突然下跌后又自动恢复的现象。除流量指示值下偏外,还出现过调节器的给定值指针也下跌。

分析与判断 首先用备品替换FRC-02的调节器,故障现象没有消除。

上述故障现象发生时间很短,很快又恢复正常。根据工艺人员反映和叙述的现象,仪表工认为可能是仪表测量回路有故障,又因为调节器的外给定指针也有过下跌现象,综合考虑,不单纯是仪表输入回路有故障。根据自控流程图,FRC-02的外给定是由FRC-01的开方器输出经过减法器提供的,逐项检查减法器和开方器。在校验FRC-01开方器时,发现开方器输出端子⑤的螺丝严重松动,与减法器相连的一个引线旱片接触不好。由图可知,FRC-02乙烯出料流量调节器外给定值是回流量与偏差设定器提供的偏差设定值在减法器中相减后的输出值。如果开方器⑤号端子一根引线松动,偶尔接触不好,即无电压输出,将造成减法器瞬间无输出,亦造成FRC-02调节器外给定指针下跌。外给定瞬时下跌一般不会引起操作工注意,当操作工发现乙烯流量下跌时,开方器端子接触又好了,调节器外给定恢复正常,流量又慢慢恢复正常,因为流量恢复需要一定时间,调节器外给定指示变化只是在瞬间,故操作工看到流量下跌现象较多,而流量下跌又恢复正常的原因实际上是由外给定接触不好造成的。

原因找到了,只需将开方器⑤号端子拧紧,这种故障就消失了。

稀释蒸汽流量调节系统振荡

工艺过程 某石化企业裂解炉稀释蒸汽流量调节系统FIC—108是一个单回路简单调节系统。该装置建成初开车,调节阀采用笼式阀(套筒阀)。

故障现象 流量调节系统手动状态稳定,投入自动状态就产生系统振荡,无法稳定。

分析与判断 装置是刚建成投产的,流量指示调节系统也属于开车之列,它不同于大修后重又开车的调节系统。后者经过生产实践考验,说明系统设计合理。前者出现故障,除正常判断外,还要考虑调节系统设计是否合理。首先检查仪表流量测量系统,看差压变送器自身是否产生振荡,重新整定调节器P、I、D参数。如果差压变送器正常,调节器本身调校也正常,那么调节系统组成中只剩下调节阀这一环节了。通过对调节阀进行分析,认为调节阀流通能力选择过大,即C,值过大。在相同压力差和相同阀门开度下,C值越大,单位时间内介质流过阀门的量越多。在稀释蒸汽流量调节系统中,由于调节阀C,选得过大,当系统中流量稍有变化,产生的偏差信号就使调节器发出微小的调节信号,调节信号将改变调节阀的开度。因为C值大,调节阀开度虽然变化不大,却引起工艺流量较大幅度地变化,或者说调节过量了。这样反过来又产生偏差,引起调节器反方向产生调节信号,引起调节阀反方向变化,造成工艺流量较大幅度变化,如此反复,造成系统振荡。处理方法是调换调节阀阀芯,因为是笼式阀,将阀芯窗口面积减小,即将原调节阀V值从175减小到99,控制系统得以稳定。 2/4 首页上一页1234下一页尾页

上一篇:电线电缆常识80问答
下一篇:化工自动化仪表的检修与维护
评论功能暂停使用! 共有条评论
用户名: 密码:
验证码: 匿名发表
Powered by www.pv265.com   © 2011-2014