可以沉降下来进入塔底的底流中,未沉降的细颗粒随物料经内外筒之间的环形空间由下向上运动,在内筒顶部又随液流进入内筒中。
在内筒首先与含铀的酸性溶液相遇,部分超细粒沉淀立即被酸溶解,这既中和了料液中的余酸(均相中和),避免了局部酸度过高,又提高了溶液的铀浓度,为沉淀提供了充足的物料,这些都为沉淀结晶过程创造了良好的条件。物料在内筒中继续下行时,与沉淀剂氨水相遇,发生中和沉淀,溶液中的铀在未溶解的固体颗粒表面结晶析出,即所谓的二级成核生长过程。 长大的颗粒沉入塔底,定期排除塔外,细颗粒继续循环、长大、沉淀。母液自塔顶溢流出塔,实现了连续化生产。底流固体沉淀颗粒粗,易于过滤、洗涤,得到了质优产品。 (2)蒸发法。 常用于溶解度变化不大的物质。例如盐田晒盐(氯化钠)。将海水或盐卤引入盐田,经风吹、日晒使水分蒸发、浓缩而结晶出食盐。“天工开物”中就记载了我们的祖先采取此法生产食盐的事实。 (3) 冷却法。 使溶液冷却(冷冻)而达到饱和产生结晶。此法用于溶解度随温度下降而减少的物质,例如:硝酸铵、硝酸钾、氯化铵、磷酸钠、芒硝等,这些物质的溶解度温度系数变化很大,当温度下降后,这些物质的溶解度下降,形成了过饱和溶液,处于热力学不稳定状态,溶质就会自溶液中结晶析出。下图为部分盐的溶解度曲线。 (4)盐析法。 在溶液中,添加另一种物质使原溶质的溶解度降低,形成过饱和溶液而析出结晶。加入的物质可以是能与原溶媒互溶的另一种溶媒或另一种溶质。例如:侯德榜法生产纯碱工艺中需要分离氯化铵就采用了此法。由图2中氯化钠和氯化铵的溶解度曲线可见,当溶液温度<10 ℃后,氯化铵的溶解度低于氯化钠,此时可往溶液中添加磨细的氯化钠粉末,固体氯化钠溶解后提供了大量的氯离子使氯化铵的溶解度大大降低而析出。氯化钠溶解是一种吸热反应(1.2大卡/摩尔),氯化钠溶解使溶液温度进一步下降,氯化铵进一步析出。此操作既分离出副产物氯化铵又向溶液中引进了下一步工序所需的钠离子,是冷冻结晶和盐析结晶分离技术巧妙结合应用的杰作。 (5)抗溶剂法。 通过加入能降低溶解度的抗溶剂,如碳酸钠的抗溶剂结晶,在此结晶体系中,乙二醇、一缩二乙二醇或者1,2-丙二醇等可加入其水溶液中,以降低溶解度,产生过饱和度。 晶体形成过程可以用一张简图表示如下: |