类似的还有荷叶。 实际上,已经有某些中高档轿车使用了斥水玻璃,例如凯美瑞2.5及以上车型的前车窗都使用的斥水玻璃。 (6)储氢材料 随着人类对可再生能源的重视程度越来越高,氢能作为一种绿色清洁能源具有广阔的发展前景。目前,限制氢作为燃料用于工业和人类生活中的难点主要是在氢的发生、储存和运输等方面还存在问题。科学家们已根据氢的物理化学特性研究得知,若使储氢材料具有实用价值,必须具备以下特性:储氢含量高,具有高度的反应可逆性,且可在常温常压下进行;具有良好的循环性,而且循环的次数要足够多;易活化、滞后效应小;具有优良的抗毒性能。此外,在研究设计时还应注意要尽量满足比重小、能量密度高、制造工艺简单、安全等特性。由于目前人类科学技术水平的限制,还未能发现能同时满足上述多数条件的储氢材料,因而其应用也受到了很多限制。 20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金,这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物,外在表现为大量“吸收”氢气,同时放出大量热量。而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。别看储氢合金的金属原子之间缝隙不大,但储氢本领却比氢气瓶的本领可大了。具体来说,相当于储氢钢瓶重量1/3的储氢合金,其体积不到钢瓶体积的1/10,但储氢量却是相同温度和压力条件下气态氢的1000倍。 迄今为止,在已发展的稀土金属系(AB5型)、钛系(AB型)、锆系(AB2型)和镁系(A2B型)储氢合金中,镁系合金是很有发展前途的一种。镁基合金储氢原理是氢气吸收过程中镁纳米颗粒与氢气相互作用,形成氢化镁;氢气释放过程中,氢化镁分解成镁与氢气。但是金属镁化学性质非常活泼,容易与水和氧气发生化学反应,从而使得储氢效率变得极低。为了解决这个问题,2011年美国劳伦斯伯克力国家实验室开发了一种新技术,研究人员用一种选择性透过有机聚合物将镁纳米颗粒包裹起来,这种有机聚合物的特点是能选择性地让氢气分子自由进出,而将氧气和水分子隔绝在外(图3-8)。研究结果表明,该技术无需使用重金属做催化剂,且储氢密度较高(氢气重量能达到总重量的4%),冲入氢气的速度较快(能在200°C条件下,在30分钟内充满)。 (7)金属玻璃 研究人员发现,当对液态金属快速冷却,即金属的原子还没有时间排列整齐就冷却成固体了,这样形成的金属材料称之为金属玻璃。如果说钢铁等晶态固体的原子排序好比列队整齐的阅兵式阵列,那么玻璃等非晶态固体的原子排序就像是王府井大街上熙熙攘攘的人群。 1960年加州理工学院的科学家们首先发现了金属玻璃(又称非晶合金),金属玻璃既有金属和玻璃的优点,又克服了它们各自的弊病(玻璃易碎,没有延展性,而金属硬度和耐磨损性能不佳)。金属玻璃兼有玻璃、金属、固体和液体的某些特性.比如:金属玻璃是迄今为止最强的材料之一,一根直径4mm 粗的金属玻璃丝可以悬吊起3吨的重物;将它浸在强酸、强碱性液体中,仍能完好无损;具有接近陶瓷的硬度却在一定温度下能像橡皮泥那样的柔软、像液体那样流动。 3/6 首页上一页123456下一页尾页 |