文档搜索: (不可包含符号 “ / ”) 搜索帮助?
您的位置: 标准资料网 -> 冷却塔  > 专题内容

冷却塔简介:

冷却塔是一个散热装置,是一种利用水的蒸发吸热原理来散去工业上或制冷空调中产生的废热以保证系统的运行的装置,他能将冷却水的温度降下来。是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程。

 冷却塔

冷却塔分类

根据冷却过程的不同,冷却塔分为湿式和干式两类。
  
湿式冷却塔  
主要以蒸发过程散热。塔内水与空气直接接触进行热交换:空气竖向流过水平布置的散热装置并与热水下落方向相反的称逆流式冷却塔,如图1和图2。空气水平流过竖向布置的散热装置并与热水下落方向相交的称横流式冷却塔。 冷却塔  冷却塔  

干式冷却塔  
主要以传导、对流散热。塔内水与空气不接触而是经过带鳍管组的散热器与空气接触散热。干式冷却塔耗资大、效率低,但省水。

新发展干/湿式混合冷却塔,热水先通过干塔部分进行降温,然后流入湿塔部分再蒸发冷却,兼有干式和湿式冷却塔的优点。

冷却塔工艺要求

要完成散热过程,必须有足够的冷空气通过塔内的散热装置进行热交换。因此,冷却塔应有通过气流的结构(通风筒)和支承散热装置(湿式冷却塔为配水、淋水装置,干式冷却塔为带鳍管的散热器)的构架及冷却水的回收装置(湿式塔为集水池、干式塔为回水管道)。

通风方式有:
自然通风冷却塔  
以塔内、外空气密度差为推动力产生气流,故需要很高的通风筒以产生足够的抽力。世界上已建成高达170米,直径为135米,每小时可冷却水136200米的冷却塔。
  
机力通风冷却塔  
由风机产生气流,风筒较短小,仅起排风导流作用。风机直径较小(4.7~8.0米)的冷却塔,多建成方格形的塔组;风机直径较大(12.0~20.0米及以上)的冷却塔,多建成圆形或多边形的单个塔;最大风机直径达26米。也有在一个圆形或多边形的塔上装设几台或十几台直径较小的风机,以便调节负荷。风机可布置成鼓风式或抽风式。

冷却塔结构形式

为了节约能源,大型冷却塔多用自然通风冷却塔,它由通风筒、支柱和基础组成。通风筒多为钢筋混凝土双曲线旋转壳,具有较好的结构力学和流体力学特性。壳体下部边缘支承在等距离的V形或X形斜支柱上,以构成冷却塔的进风口。壳体的荷载经斜支柱传到基础上。基础多做成带斜面的环形基础以承受由斜支柱传来的部分环拉力,也可做成分离的单个基础或桩基础。
  
通风筒的喉部直径最小,壳壁最薄,由此向上直径逐渐增大构成气流出口扩散段,塔顶处设有刚性环,或将塔壁局部加厚以增加塔顶边缘刚度。喉部以下按双曲线形逐渐扩大,下段壳壁也相应加厚,形成一个具有一定刚度的下环梁。通风筒也可做成截头锥壳或组合锥壳,或用钢构架外包木护板或石棉水泥护板的多边形塔筒。近几年联邦德国在施梅豪森的核电站的一座高146米,直径为140米的干式冷却塔中采用了网索结构的塔筒,外包铝质护板,具有较好的抗震和抗风性能。
  
机力通风冷却的方格形、圆形或多边形的塔体均为框架结构,并有进风口、通风筒和支承风机的结构,可按平面或空间结构进行分析。淋水装置构架为钢筋混凝土结构,柱子可直接放在集水池底板上或支承在分离的单个基础上。
  
钢筋混凝土双曲冷却塔的计算  

荷载却塔的荷载有自重、风荷载和温度应力,在地震区还要考虑地震作

圆形逆流式冷却塔结构特点用。
①自重,塔壳自重沿子午向产生薄膜压应力。当计算壳体受压稳定时,自重应乘以一个放大系数。当计算壳体上举力时,乘以一个降低系数。

②风荷载。通风筒属高耸薄壁结构,对风荷载特别敏感。人们研究了风压沿壳面的分布、塔群和邻近高耸建筑物对风压分布的影响及脉动风压引起塔壳的动力反应等。作用在塔壳表面的风荷载常用风洞模型试验或对原型塔实测的风压分布曲线作为设计依据。壳面的粗糙度对风压负峰值有显著影响,大型冷却塔多在壳面布置许多小肋以增加塔面的粗糙度,从而降低风压负峰值。脉动风压可用频谱放大系数来调整。

③温度应力。按温度梯度沿塔壁厚度依线性变化,而沿环向为常值来进行计算。

④地震作用。响应谱法是估计冷却塔地震作用的一种有效方法。用振型叠加法和标准反应谱可求得对应于每一振型的最大地震力和相应的内力,在冷却塔的抗震设计中,通常只考虑一个水平地震力分量。竖向地震力仅对斜支柱、基础和地基有影响。
  
计算原则  
塔筒可作为弹性、各向同性的均质壳体进行分析。对大型塔筒,由于壳面出现裂缝或施工的几何偏差,分析时应考虑其非线性和各向异性的影响。用分析弹性薄壳的弯矩理论来设计塔壳及其支柱。如果能用适当方法进行塔壳的局部弯曲计算,也可用薄膜理论来设计。计算时必须考虑塔壳的真实几何尺寸及边界条件,其弹性变形值不得超过所用设计理论规定的极限值。设计下环梁时应考虑斜支柱的影响。柱子设计应与塔壳分析所得的力和弯矩相协调。设计时在工作荷载下应控制开裂及变形。
  
动力反应  
脉动风压引起塔壳的动力反应可用阵风响应因子来近似地估计。在壳面设环向小肋可改善塔壳的动力特性。
  
稳定分析  
风荷载引起的应力可使塔壳喉部附近发生屈曲,塔壳的临界屈曲压力可根据模型试验结果来估计,也可用稳定的分支理论按塔的理论几何尺寸和边界条件并考虑自重及由于开裂而使刚度降低的影响进行估计。考虑到材料的非线性和出现裂缝时刚度显著降低,故屈曲安全系数通常不小于 5。当已考虑自重及开裂的影响时,安全系数不小于2。风和自重同时作用在塔壳上所引起的应力会使塔壳下部发生屈曲,塔壳几何尺寸施工偏差超过正常的允许值时,会使塔壳的抗屈曲能力降低。
  
使用以有限元法作数值分析的计算机程序进行塔筒(双曲线旋转壳、截头锥壳和组合锥壳)的静力和动力分析设计,能满足上述原则的要求。

冷却塔 - 类型特点

逆流塔 
1、水在塔内填料中,水自上而下,空气自下而上,两者流向相反一种冷却塔。
  
2、逆流冷却塔热力性能好、分三个冷却段:

方形逆流式玻璃钢冷却塔①布水器到填料顶这一空间,此段的水温较高,所以仍可将热量传给空气。
②填料水与空气热交换段。
③填料至集水池空间淋水段,水在此段被冷却称之为“尾效”。在我国北方水温可下降1-2℃。综上所述,逆流塔比横流塔在相同的情况下,填料体积小20%左右,逆流塔热交换过程更合理冷效高。
  
3、配水系统不易堵塞、淋水填料保持清洁不易老化、湿气回流小、防冻化冰措施更容易。多台可组合设计,冬季以所需的水温水量可合并单台运行或全部停开风机。
  
4、施工安装检修容易、费用低,常用在空调和工业大、中型冷却循环水中。


横流塔
l、水在塔内填料中,水自上而下,空气自塔外水平流向塔内两者流向呈垂直正交一种冷却塔。常用在噪声要求严格的居民区内,是空调界使用较多的冷却循环塔。优点:节能、水压低、风阻小、亦配置低速电机、无滴水噪声和风动噪声,填料和配水系统检修方便。
  
2、可随建筑形状随意构筑基础多台放置,根据所需的水温分别启动单台或多台冷却塔。
  
3、应注意的是:框架要多40%热交换时要有较多的填料体积,填料易老化、配水孔易堵塞、防结冰不好、湿气回流大。横流塔的优点正是逆流塔的缺点。

喷雾通风无填料冷却塔
采用独特的喷雾喷嘴安装在冷却塔底上部进风处,有喷雾自旋无电机送风和塔顶排风两种方式。将热水经喷嘴内旋片时产生内旋流形成细微雾状化喷出,使雾状存 在、向上喷顺流亦下落逆流两个冷却时效。雾化均匀无中空现象,冷却效果稳定、电能消耗低、漂水率0.01%,不用填料、造价低寿命长,符合 GB7190.1-1997国家标准。使用范围冶金、食品、化工、高浊、高温、防腐冷却塔。

封闭式冷却塔
1. 封闭式冷却塔是传统冷却塔的一种变形和发展。它实际上是一种蒸发式冷却塔,冷却器和湿式冷却塔的组合,它是卧式的蒸发式冷却塔,工艺流体在管内流过,空气 在管外流过,两者互不接触。塔底蓄水池内的水由循环泵抽取后,送往管外均匀地喷淋下来。与工艺式流体热水或制冷剂和管外空气并不接触,成为一种封闭式冷却 塔,通过喷淋水增强传热传质的效果。
  
2.封闭式冷却塔适用于对循环水质要求较高的各种冷却系统,在电力、化工、钢铁、食品和许多工业部门有应用前景。另一方面,与空冷式热交换器相比,蒸发式冷却塔利用管下侧水的蒸发潜热,使空气侧传热传质显著增强,也具有明显的优点。


冷却塔工作原理

通用术语“冷却塔”是用来描述直接(开路)和间接(闭路)散热设备。虽然大多数想出一个“冷却塔作为一个开放的直接接触散热装置”,间接冷却塔,有时被称为“闭合电路的冷却塔”的是但也是一个冷却塔。

       一个直接的,或开路冷却塔是一个密封结构内部的手段,通过将循环水以喷雾方式,喷淋到玻璃纤维的填料上。填料提供了更大的接触面,通过水与空气的接触,达到换热效果。再有风机带动塔内气流循环,将与水换热后的热气流带出,从而达到冷却。

       填充可能包括多个,主要是垂直,湿面赖以传播的水(填充)或横向飞溅要素创造了许多具有较大的地表面积小水滴级联几个层次薄膜(飞溅)。

Powered by www.pv265.com   © 2011-2014